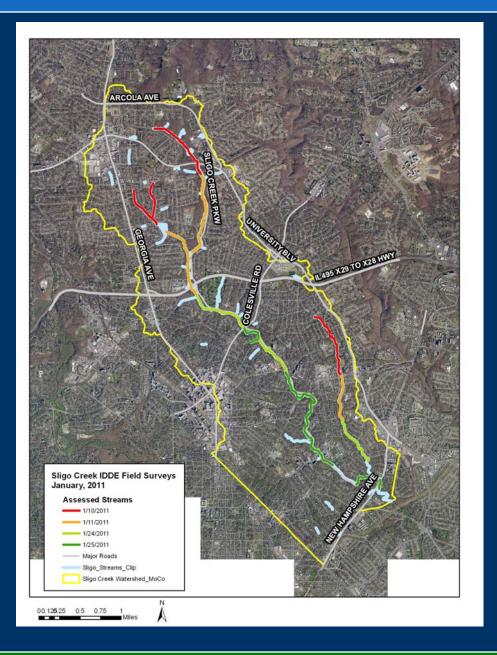
IDDE Monitoring in Sligo Creek

Friends of Sligo Creek

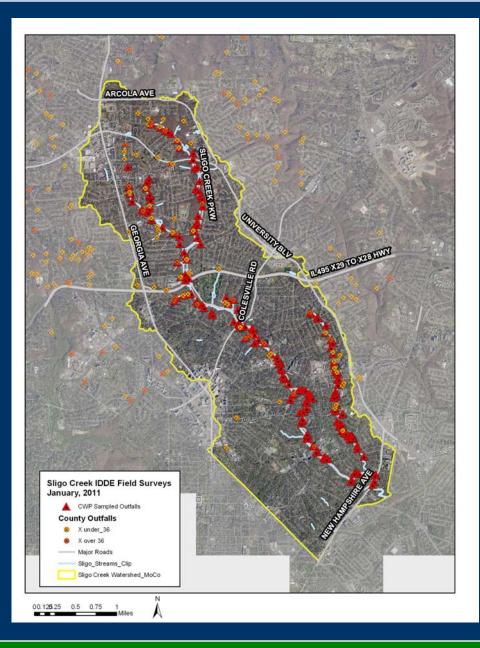
Lori Lilly Watershed Ecologist/Planner July 20, 2011

What is an Illicit Discharge?

- A discharge to an MS4 that is not composed entirely of storm water except permitted discharges and fire fighting related discharges 40 CFR 122.26(b)(2)
- Unique frequency, composition & mode of entry
- Interaction of the sewage disposal system & the storm drain system
- Produced from "generating sites"


Regulatory Context

Illicit discharges are regulated under Phase II MS4 permits as one of the six Minimum Measures Communities must develop a means for regulating illicit discharges, a plan to address them, education strategies and measurable goals



Discharge Frequency

Continuous discharges Occur most or all of the time Intermittent discharges Occur over a shorter period of time (e.g., a few hours per day or a few days per year) Transitory discharges Occur rarely, usually in response to a singular event such as an industrial spill, ruptured tank, sewer break, transport accident or illegal dumping episode

Outfall Reconnaissance Inventory (ORI) Qualitative Assessment

Outfall Damage
Deposits/Stains
Abnormal Vegetation
Poor Pool Quality
Pipe Benthic Growth

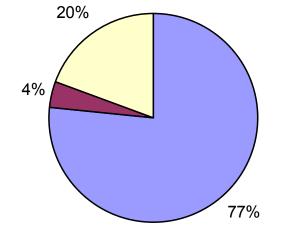
Outfall Reconnaissance Inventory (ORI) Quantitative Assessment

	Parameters Analyzed	
In the field	Ammonia	
Sample 1	Fluoride	
	Anionic Surfactants	
	Potassium	
Sample 2	Total Nitrogen	
	Total Phosphorus	
Sample 3	E. coli and Total coliform	

Field Work Summary

Four days in the field throughout January, 2011 10 miles walked in Sligo Creek in Montgomery County 213 outfalls assessed 4 In-stream measurements 14 volunteers contributed 114 hours over field sampling period

Outfall Summary

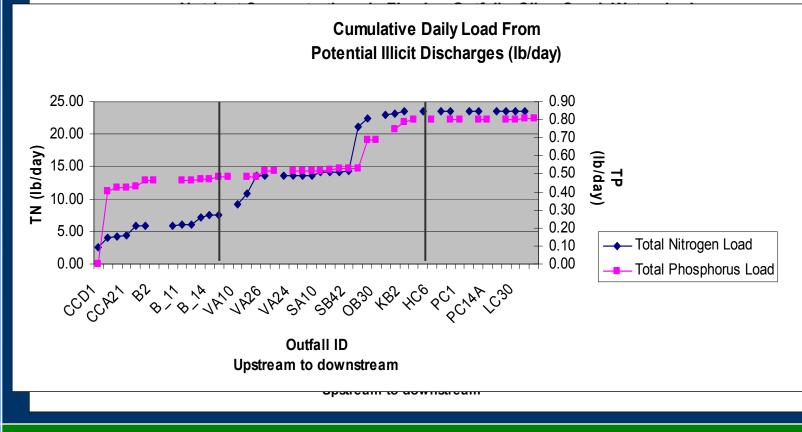


- Flowing outfalls: 58/213 (27%)
- Mapped outfalls: 45/213 (21%)
- Overall hits for flowing outfalls: ~80%
- Field hits for ammonia (>0.1 mg/l): 35/58 (60%)
- Hits for fluoride (>0.25 mg/l): 17/58 (29%)
- Hits for detergents (>0.25 mg/l): 24/58 (41%)
- Storm drain investigations: 23

Bacteria – E. coli and Total Coliforms

Outfalls with E. coli above EPA threshold for contact recreation (235 CFU/100ml): 14/58 (24%); range – up to 26,000 CFU/100ml Outfalls with total coliform >235 CFU/100ml: 38/58 (66%); range – up to 30,000 CFU/100ml

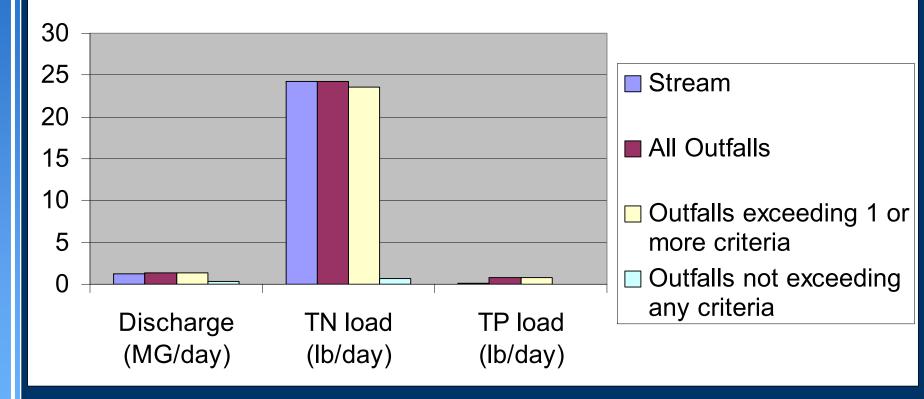
Percentage of Total E.coli in Sligo Creek Outfalls


Suspect Outfalls

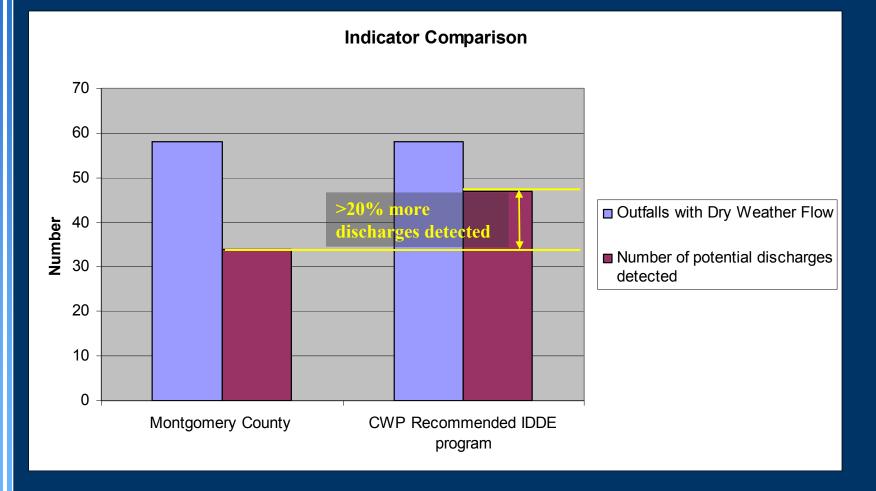
"Clean" outfalls

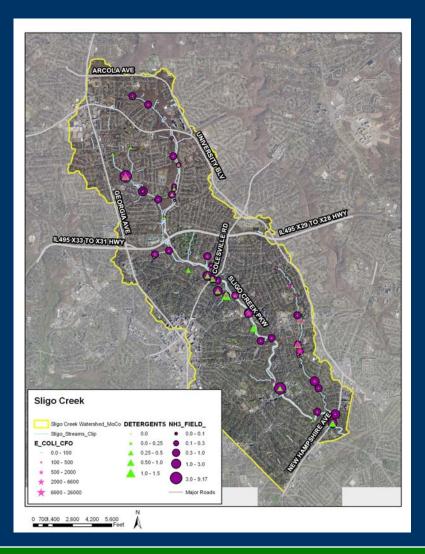
Obvious Sew age Discharge

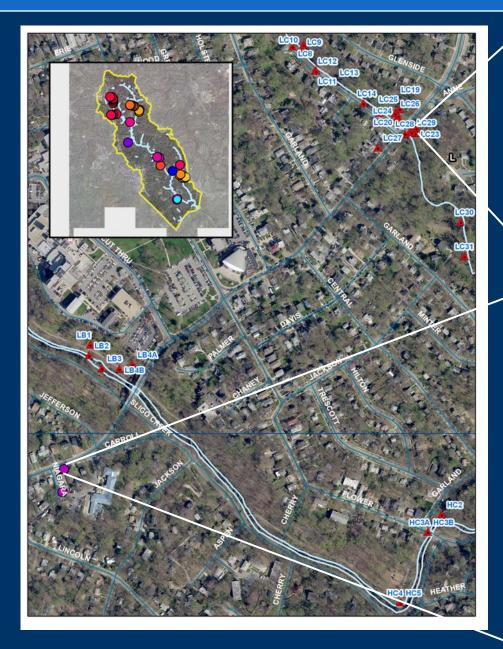
Nitrogen & Phosphorus Total nitrogen range: 0.645-9.744 mg/l Total phosphorus range: 0.001-0.899 mg/l

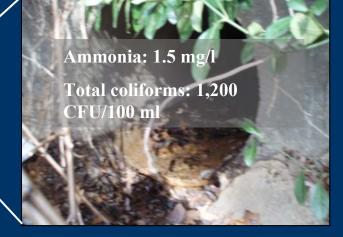


In-stream Sampling – 4 sites



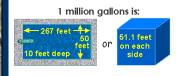

Sligo Creek Watershed Summary


Illicit Discharge Indicators

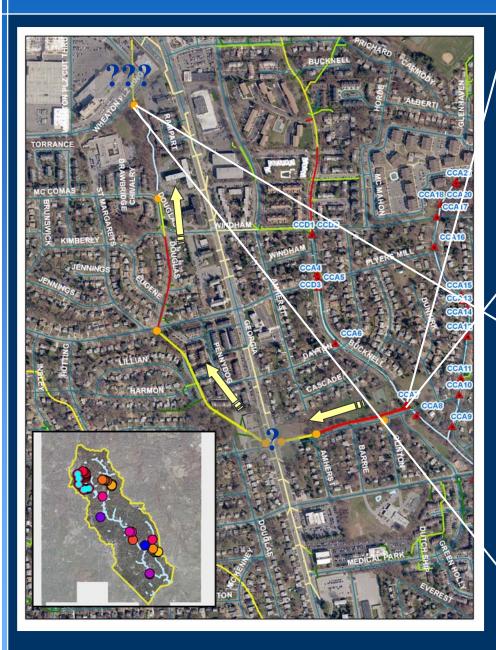


Storm Drain Investigations

• Tracking team visited wrong site, however, they found two other illicit discharges


• Manhole investigation revealed a likely direct connection between a rehab center and the storm drain (ammonia: 0.87 mg/l; lab QC: OR)

• Detected additional flow from 7513 Carroll Ave; discharge traveled via the street and appeared to be from a sump pump although frequency was high for a sump pump


• Field ammonia: >1 mg/l and lab QC: OR

Ammonia: 1.04 mg/l Fluoride: 0.3 mg/l Detergents: 0.25 mg/l E. coli: 6,000 CFU/100 ml

- Four site visits to this outfall
- Dye testing in school and video inspection revealed no connections
- Two sources of flow identified from Mansfield and between Mansfield and Dale on Wayne
- TN 6.9 lb/day; TP 0.16 lb/day
- Cumulative load as of 7/20/2011 = 1,000 lbs + ? TN & 23 + ? Lbs TP
- 38 million gallons + ?

1/10/2011 Ammonia: 3.62 mg/l

- Potassium: 31 ppm
- Detergents: 0.75 mg/l
- E. coli: 13,000 CFU/100 ml
- Flow: 32,344 gallons/day

Original total nitrogen load: 1.47 lb/day As of 7/20/2011 -

~4.8 million gallons + ?

Total nitrogen load = 216 lbs +?

Maple Ave. Outfalls

HA5

SB43

Ammonia – 0.32 mg/l

Potassium — 17 ppm Detergents – 1.5 mg/l E. Coli – 1,600 CFU/100 ml

Cost-effectiveness

	Total Nitrogen	Total Phosphorus	
Sligo Creek Daily Load	24 lbs	0.8 lbs	
Cost to repair (at a high estimate of 10K/repair)	\$300,000	00,000	
Annual stormwater runoff equivalent from impervious cover	560 acres	140 acres	
Cost to retrofit equivalent impervious cover*	\$25,000,000	\$7,000,000	

*See Watershed Treatment Model for assumptions

Recommendations to County Follow up on identified problems Dedicated IDDE staff Additional staff training for new parameters / isolating sources

- Education & outreach needs for transitory discharges
- Hotspot assessments needed?
- Complex drainage areas need attention

Recommendations to County

- Walk streams for outfall surveys Complete outfall & stormwater mapping for watersheds ~ unmapped outfalls contributed 37% of total phosphorus load & 63% of total nitrogen load Addition of (or replacement with) ammonia, potassium and bacteria to monitoring parameters Use of fluoride rather than chlorine
- Keep detergents, lower threshold
 Look into sump pumps

Recommendations to County

Future monitoring:

- Resurvey confirmed polluted outfalls four times per year until clean for 1 year;
- Resurvey remaining suspect and potentially polluted outfalls at least one time per year;
- Engage/encourage citizen water monitoring efforts to expand the County's capacity to address water pollution issues
- Continue monitoring, or have citizens continue to monitor, for bacteria and assure that standards improve after elimination of the identified problems.

Role of FOSC

Ensure follow-up on identified problems Education & outreach in hotspot areas Communicate the message that IDDE needs to be a priority for clean waterways Follow-up monitoring? Eyes and ears for dry weather flows

Next steps

- County may put more resources into IDDE dedicated staff? Recognize that the program is beneficial for achieving water quality goals
- County programmatic changes: indicators and walking streams
- CWP working to get IDDE listed as a BMP so that local jurisdictions can get "credit" for IDDE in the Bay TMDL; County is supportive
- CWP Marpat Foundation proposal for additional work in Sligo Creek

