![]() |
![]() |
Definition of Water Quality ParametersSource: Testing the Waters: Chemical and Physical Vital Signs of a River by Sharon Behar. Montpelier, VT: River Watch Network, 1997. ISBN 0787234923 |
Temperature
Water temperature is affected by air temperature, stormwater runoff, groundwater inflows, turbidity, and exposure to sunlight. In considering the health of organisms, it is necessary to consider their maximum temperature and optimum temperature. The maximum temperature is the highest water temperature at which the organism will live for a few hours. The optimum temperature is the temperature at which it will thrive.
Fish | Short-term maximum | Optimum for Spawning | ||
Celsius | Fahrenheit | Celsius | Fahrenheit | |
Bluegill | 35 | 95 | 25 | 77 |
Brook trout | 24 | 75 | 9 | 48 |
pH is measured on a logarithmic scale between 1 and 14 with 1 being extremely acid, 7 neutral, and 14 extremely basic. Because it is a logarithmic scale there is a ten fold increase in acidity for a change of one unit of pH, e.g. 5 is 100 times more acid than 7 on the pH scale. The largest variety of freshwater aquatic organisms prefer a pH range between 6.5 to 8.0.
Every creek will have a baseline conductivity depending on the local geology and soils. Higher conductivity will result from the presence of various ions including nitrate, phosphate, and sodium.
The basic unit of measurement for conductivity is micromhos per centimeter (µmhos/cm) or microsiemens per centimeter (µS/cm). Either can be used, they are the same. It is a measure of the inverse of the amount of resistance an electric charge meets in traveling through the water. Distilled water has a conductivity ranging from 0.5 to 3 µS/cm, while most streams range between 50 to 1500 µS/cm. Freshwater streams ideally should have a conductivity between 150 to 500 µS/cm to support diverse aquatic life.
Dissolved Oxygen
Dissolved oxygen is oxygen gas molecules (O2) present in the water. Plants and animals cannot directly use the oxygen that is part of the water molecule (H2O), instead depending on dissolved oxygen for respiration. Oxygen enters streams from the surrounding air and as a product of photosynthesis from aquatic plants. Consistently high levels of dissolved oxygen are best for a healthy ecosystem.
Levels of dissolved oxygen vary depending on factors including water temperature, time of day, season, depth, altitude, and rate of flow. Water at higher temperatures and altitudes will have less dissolved oxygen. Dissolved oxygen reaches its peak during the day. At night, it decreases as photosynthesis has stopped while oxygen consuming processes such as respiration, oxidation, and respiration continue, until shortly before dawn.
Human factors that affect dissolved oxygen in streams include addition of oxygen consuming organic wastes such as sewage, addition of nutrients, changing the flow of water, raising the water temperature, and the addition of chemicals.
Dissolved oxygen is measured in mg/L.
0-2 mg/L: not enough oxygen to support life.
2-4 mg/L: only a few fish and aquatic insects can survive.
4-7 mg/L: good for many aquatic animals, low for cold water fish
7-11 mg/L: very good for most stream fish
Nitrate is measured in mg/L. Natural levels of nitrate are usually less than 1 mg/L. Concentrations over 10 mg/L will have an effect on the freshwater aquatic environment. 10 mg/L is also the maximum concentration allowed in human drinking water by the U.S. Public Health Service. For a sensitive fish such as salmon the recommended concentration is 0.06 mg/L.
Water with low dissolved oxygen may slow the rate at which ammonium is converted to nitrite (NO2-) and finally nitrate (NO3-). Nitrite and ammonium are far more toxic than nitrate to aquatic life.
Sources of phosphate include animal wastes, sewage, detergent, fertilizer, disturbed land, and road salts used in the winter.
Phosphates do not pose a human or health risk except in very high concentrations. It is measured in mg/L. Larger streams may react to phosphate only at levels approaching 0.1 mg/L, while small streams may react to levels of PO4-3 at levels of 0.01 mg/L or less. In general, concentrations over 0.05 will likely have an impact while concentrations greater than 0.1 mg/L will certainly have impact on a river.